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This document contains two sections that expands on some of the results in the main

body of the paper. The first section discusses a parametric example of the basic model

setup. The second section provides an extensive analysis to the case where litigation

might occur in equilibrium.

B A Parametric Example

Consider the case where the downstream demand corresponds to a unique consumer

with a valuation for one unit of the good. With probability α ∈ (0, 1) this valuation

is 1. With probability 1 − α the valuation is v < 1. Furthermore, we assume that the

downstream firm chooses the price after the valuation has been realized. This timing

implies that the downstream producer will always choose a price equal to the realized

valuation of the consumer. That is, given R the downstream producer captures all the

surplus without generating the losses associated to double marginalization. As a result,

expected downstream profits ΠB(R) can be computed as

ΠB(R) =


α + (1− α)v −R if R ≤ v,
α(1−R) if R ∈ (v, 1],
0 otherwise.

(1)

These profits are decreasing and weakly convex in R.1 Notice that the demand is weakly

log-concave in the price as expected from Assumption 1. However, the fact that profits

1A dead-weight loss would arise if we assumed that the downstream producer chose the price before
the demand is realized. In that case, the threshold value on R in the profit function ΠB(R) would change.
That is, pM (R) = v if and only if R ≤ R̃ ≡ v−α

1−α < v. Since double marginalization does not interact with
the mechanisms explored in this paper (see Assumption 1), the main results would go through under
this alternative assumption although at the cost of an increasing technical complexity.
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are not linear everywhere is enough for our results to go through.

We start by characterizing the royalty rate that maximizes joint profits for the up-

stream patent holders when their portfolio is sufficiently strong so that g(x1) = g(x2) = 1.

This royalty rate will be used as a benchmark for the case in which innovators decide

independently.

Proposition 1. Under the two-point demand function, when g(x1) = g(x2) = 1 there

is a continuum of undominated pure-strategy equilibria. The corresponding royalty rates

(ru1 , r
u
2 ) can be characterized as follows:

1. If v ≥ 2α
1+α

, Ru = ru1 + ru2 = v with rui ≤ v−α
1−α for i = 1, 2,

2. If v ≤ 1+α
2

, Ru = ru1 + ru2 = 1 with rui ≥ v−α
1−α for i = 1, 2.

Both kinds of equilibria co-exist when 2α
1+α
≤ v ≤ 1+α

2
. All equilibria imply royalty stacking

when α ≤ v < 2α
1+α

.

Proof. Regarding the first case, contingent on selling with probability 1 the sum of roy-

alties must be equal to v or otherwise any patent holder would deviate and increase the

royalty rate. Hence, take ru1 and ru2 = v − ru1 and suppose without loss of generality that

ru1 ≥ v
2
≥ ru2 . The optimal deviation for patentee i is r̂i = 1 − ruj for j 6= i and it would

be unprofitable if v− ruj ≥ α(1− ruj ) or ruj ≤ v−α
1−α . Such a combination of royalties is only

possible as long as v
2
≤ ru1 ≤ v−α

1−α or v ≥ 2α
1+α

.

For the second case, take ru1 and ru2 = 1 − ru1 and suppose without loss of generality

that ru1 ≥ 1
2
≥ ru2 . The optimal deviation for patentee i is r̂i = v − ruj for j 6= i if it leads

to a positive royalty and it would be unprofitable if α(1− ruj ) ≥ v− ruj or ruj ≥ v−α
1−α . Such

a combination of royalties will be possible as long as v−α
1−α ≤ ru2 ≤ 1

2
or v ≤ 1+α

2
.

Finally, notice that 2α
1+α

< 1+α
2

for all α ∈ [0, 1] so both equilibria can co-exist.

Intuitively, the equilibrium with a total royalty of 1 is likely to exist when v is small

and α is sufficiently close to 1. A deviation might exist if any patent holder prefers to
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Figure 1: Equilibrium with ru1 + ru2 = 1. Profits for patent holder 1 correspond to the
gray area. The striped area indicates the profits under the optimal deviation.

decrease the royalty rate in order to cater the consumer regardless of her valuation. This

deviation is illustrated in Figure 1. Given ru2 , innovator 1 can choose ru1 = 1 − ru2 or

deviate and choose r̂1 = v − ru2 so that the probability of selling increases from α to 1.

Such a deviation is unprofitable if ru2 is sufficiently large and, thus, the low r̂1 does not

allow the firm to benefit from the increase in sales. In the limit, when v = 0 or α = 1

this equilibrium holds for any combination of royalties that sums up to 1.

Similarly, equilibria with a total royalty equal to Ru = v are likely to exist when v

is sufficiently high and α is sufficiently small. This time a deviation aims to capture the

additional surplus when consumer valuation is 1, even if this surplus is materialized only

with probability α. To prevent this deviation each innovator must set a modest royalty so

that the other firm already obtains sufficiently high profits in equilibrium, thus reducing

the appeal of raising the royalty rate and reducing the probability of sale. In the limit,

when v = 1 or α = 0 any combination of royalty rates that sums up to v would constitute

an equilibrium. Such coordination would also maximize social welfare.

In contrast, a total royalty R = v would be chosen by a single innovator owning both

patents if and only if v > α. Royalty stacking, which here takes the form of a total

royalty rate equal to 1 when joint profit maximization requires RM = v, arises as a Nash
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equilibrium when α ≤ v < 1+α
2

and it is unique when α ≤ v < 2α
1+α

.

B.1 One Constrained Patent Holder

Suppose now that g(x1) = 1 and g(x2) < 1 so that the downstream producer may only

be interested in litigating the portfolio of innovator 2. We restrict our discussion to the

case where v > α so that, according to Proposition 1, in the previous benchmark a

combination of royalties for which r∗1 + r∗2 = 1 constituted an equilibrium with royalty

stacking. Once the threat of litigation is accounted for, such an equilibrium may fail to

exist for two reasons. First, given r∗1 + r∗2 = 1, the downstream firm will obtain higher

profits by going to court if

r∗2 > r̄2 =

{
LB

α(1−g(x2))
if LB

1−g(x2)
< α(1− v),

(1− α)(1− v) + LB

1−g(x2)
otherwise.

(2)

Second, if r∗2 ≤ r̄2, innovator 1 might benefit from deviating to a royalty below r∗1

which induces litigation. Using a similar logic as in Lemma 3, we can show that when

the litigation cost LB is sufficiently low there is a threshold r̄1 > 0 such that litigation

will occur if r1 < r̄1. The next lemma characterizes the region under which litigation may

occur as a function of r1.

Lemma 2. Under the two-point demand function, if r2 > r̄2 there is no equilibrium with

royalty stacking and no litigation. If

r2 ≤ r2 =

{
LB

1−g(x2)
if LB

1−g(x2)
≤ v,

LB

α(1−g(x2))
− 1−α

α
v otherwise,

(3)

innovator 2 will not be brought to court for any r1 ≥ 0. If r2 ∈ (r2, r2], litigation will

occur if

r1 < r̄1(r2) = v +
α

1− α
r2 −

LB
(1− α)(1− g(x2))

≤ v. (4)

Proof. From the argument in the text it is immediate that for r2 > r̄2 an equilibrium

without litigation and with royalty stacking cannot arise, since for all r1 = 1−r2 litigation

will be profitable for the downstream firm. For the rest of the arguments, it is useful to

distinguish two cases depending on the relationship between v and LB

1−g(x2)
.
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Suppose that LB

1−g(x2)
≤ v. First notice that litigation will not occur for any value

of r1 if and only if r2 ≤ r2 = LB

1−g(x2)
. From Lemma 3, the incentives to litigate are

highest when r1 = 0 and, in that case, the expected profits from going to court are

(1 − g(x2))r2 ≤ LB. Consider now the case r2 ∈
(

LB

1−g(x2)
, r̄2

)
. By definition, when

r2 < r̄2 a royalty r1 = 1 − r2 induces litigation. Even if r2 is sufficiently close to

v a royalty r1 = 0 litigation will always be profitable for the downstream producer

since (1 − g(x2)) [ΠB(0)− ΠB(v)] = (1 − g(x2))v > LB. The value of r2 for which the

downstream firm is indifferent between litigating or not is defined by (4).

Consider now the case in which v < LB

1−g(x2)
. First suppose that r2 ≤ r2 = LB

α(1−g(x2))
−

1−α
α
v < LB

1−g(x2)
. In that case, even r1 will not induce litigation since the downstream

profits from going to court will be (1 − g(x2)) [(1− α)v + αr2] ≤ LB. Suppose now

that r2 ∈
(

LB

α(1−g(x2))
− 1−α

α
v, r̄2

)
. By definition, when r2 < r̄2 a royalty of r1 = 1 − r2

induces litigation. If, instead, r2 is sufficiently close to LB

α(1−g(x2))
− 1−α

α
v < v a royalty

r1 = 0 will induce litigation since the downstream profits of going to court are (1 −

g(x2)) [(1− α)v + αr2] > LB. The value of r2 for which the downstream firm is indifferent

between litigating or not is defined by (4).

Innovator 1 might benefit from lowering the royalty rate below r̄1 if, by causing lit-

igation against patentee 2, the quantity sold expands from α to 1, which would occur

with probability 1− g(x2). Hence, a profitable deviation r̂1 must be lower than v. Since

r̄1(r̄2) ≤ v it follows that the optimal deviation for innovator 1 when patentee 2 sets

r∗2 ≤ r̄2 is the highest royalty rate which guarantees that the patent of innovator 2 is

litigated, r̂1 = r̄1(r∗2).2 Innovator 1’s profits in that case would become

Π̂1 = [α + (1− α)(1− g(x2))] r̂1. (5)

That is, a deviation will lead to profits equal to r̂1 either because the valuation of the

consumer is 1 or because the valuation is v but the patent of innovator 2 has been

2More precisely, given our assumptions, r̂1 should be slightly lower than r̄1(r∗2).
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invalidated in court. This deviation will take place if profits, Π̂1, are higher than those

in the candidate equilibrium, Π∗
1 = αr∗1. Notice that the lower are r∗1 or g(x2) the more

binding this condition becomes. The next proposition characterizes the circumstances

under which Π∗
1 ≥ Π̂1 cannot hold while, as required by Proposition 1, r∗2 ≥ v−α

1−α . In

those situations, an equilibrium with royalty stacking and no litigation will fail to exist.

Proposition 3. Consider the two-point demand function case and suppose v > α. If

LB

1−g(x2)
< v−α

1−α and g(x2) is sufficiently small, there is no equilibrium with royalty stacking

and no litigation. If LU is sufficiently large, only the efficient equilibrium exists, which

involves r∗2 ≤ LB

1−g(x2)
< v and r∗1 = v − r∗2.

Proof. From Proposition 1, a necessary condition for a royalty-stacking equilibrium with

not litigation to exist is that r∗1 + r∗2 = 1 and r∗2 ≥ v−α
1−α or, else, patent holder 1 would

have incentives to lower its royalty rate.

Furthermore, a second deviation consisting in choosing a royalty slightly lower than

r̄1(r∗2) might be profitable for patent holder 1 if it leads to profits

Π̂1 = [α + (1− α)(1− g(x2))] r̄1(r∗2) > αr∗1.

This condition holds if

r∗2 < ρ(G) ≡
(1− α)(α−Gv) +G LB

1−g(x2)

α(G+ (1− α))
,

where G ≡ α + (1 − α)(1 − g(x2)) ∈ [α, 1]. Thus, in instances in which ρ(G) < v−α
1−α an

equilibrium with royalty stacking will fail to exist. This inequality implies that

G < G∗
(

LB
1− g(x2)

)
=

α(1− α)(1− v)

(1− α)
(
v − LB

1−g(x2)

)
− α2(1− v)

.

This function is increasing in LB

1−g(x2)
and G∗

(
LB

1−g(x2)

)
< G∗ (v−α

1−α

)
= 1. Hence, there is

always g(x2) sufficiently small so that the deviation will be optimal.

We now consider conditions under which an equilibrium with R = v exists. Consider

the case r∗2 = LB

1−g(x2)
< v−α

1−α and r∗1 = v − r∗2. From (3), r∗2 avoids litigation and by
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Proposition 1 patentee 1 has no incentive to deviate. Thus, the only deviation we need

to consider from patentee 2 is such that R > v. However, notice that

r∗1 = v − LB
1− g(x2)

= v +
α

1− α
r∗2 −

LB
(1− α)(1− g(x2))

= r̄1(r∗2),

and so any higher r2 will induce litigation. Hence, an equilibrium in pure strategies exists

if and only if such a deviation is not profitable

LB
1− g(x2)

≥ αg(x2)

(
1− v +

LB
1− g(x2)

)
− LU .

This condition is guaranteed if g(x2) is sufficiently small or LU sufficiently large.

This result indicates that when LB and/or g(x2) are sufficiently low, royalty stacking

will not arise in an equilibrium without litigation. In order to interpret this result it

is useful to start by considering the case under which such an equilibrium with royalty

stacking may exist. From (3) we know that if r∗2 ≤ LB

1−g(x2)
the Inverse Cournot effect has

no bite since there is no positive value of r̂1 that triggers litigation. When LB

1−g(x2)
≥ v−α

1−α

it is also possible to find r∗2 ≥ v−α
1−α , satisfying the conditions of Proposition 1. Hence, it

is optimal for innovator 1 to choose r∗1 = 1− r∗2 and an equilibrium with royalty stacking

will arise in that case.

When LB

1−g(x2)
< v−α

1−α , however, a deviation from the royalty-stacking equilibrium may

exist. Starting from a combination of royalties (r∗1, r
∗
2) with r∗i ≥ v−α

1−α for i = 1, 2, patent

holder 1 trades off a decrease in the royalty to r1(r∗2) with an increase in the probability

of sale from α to α + (1 − α)(1 − g(x2)). The previous proposition shows that if g(x2)

is sufficiently small this expansion effect dominates and the deviation is profitable. The

reason for this result is, precisely, that when v > α eliminating royalty stacking raises

total profits and the smaller is g(x2) the larger is the proportion of that increase that

innovator 1 can appropriate.

The second part of the proposition also indicates that when the probability of success

in court of innovator 2 is small two results concur. First, the royalty rate is commensurate
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with the strength of the patent portfolio and the cost of challenging those rights by the

downstream producer, r∗2 ≤ LB

1−g(x2)
. This result arises from the fact that when g(x2) is

small innovator 2 must choose a low royalty rate to discourage the downstream producer

from engaging in litigation that will, most likely, result in a zero royalty. Second, and

more interestingly, the joint profit maximizing equilibrium, consisting of RM = v, may

exist. The reason is that the low value of r2 makes innovator 1 the residual claimant of

the surplus generated. This can be seen using Figure 1, where the lower is r2 the more

innovator 1 internalizes the losses that a deviation towards a larger royalty rate may

entail.

B.2 Two Constrained Patent Holders

Suppose now that both firms have an identical patent holdings that does not confer full

protection against litigation, g(x1) = g(x2) = g(x) < 1. As in the previous case we focus

on the situation in which royalty stacking was an equilibrium when no litigation was

feasible, v > α. We study whether litigation affects the existence of an equilibrium with

royalty stacking, so that r∗1 + r∗2 = 1. As in the general case, it is enough to focus on the

symmetric case in which r∗1 = r∗2 = 1/2 as if this equilibrium did not exist no asymmetric

equilibrium would exist either.3 We also explained that in the symmetric case it will never

be optimal for the downstream producer to bring to court only one of the innovators.

The next lemma characterizes the threshold values of r̂1 for which innovator 1 expects to

be sued in case the other patentee loses in court.

Lemma 4. Under the two-point demand function with v > α, suppose that for r∗1 = r∗2 =

1/2 it is not profitable for the downstream producer to engage in litigation. If by deviating

to r̂1 < r∗1 innovator 2 is sued and its patent invalidated, innovator 1 will also be sued if

and only if r̂1 >
LB

1−g(x)
.

3As discussed in previous sections, an equilibrium may fail to exist because one of the royalty rates
is too low and, as a result, either the innovator decides to deviate and raise it even at the cost of being
sued or the other patentee may benefit from lowering its own royalty rate and serve the whole market.
By focusing on the symmetric royalty rate we are minimizing the profitability of these deviations.
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Proof. First notice that if patent holder 2 loses in court patent holder 1 will be brought

to court if and only if

ΠB(0)− ΠB(r̂1) >
LB

1− g(x)

or r̂1 >
LB

1−g(x)
. Also notice that, from the arguments in the text, if originally it was not

optimal to engage in litigation it has to be that

ΠB(1/2)− ΠB(1) ≤ LB
1− g(x)

.

Patent holder 1 would be sued after downstream producer loses against patent holder 2

if

ΠB(1/2)− ΠB(1/2 + r̂1) >
LB

1− g(x)

which is incompatible with the previous condition.

The deviations that this lemma characterizes determine two regions depending on

whether r̂1 is higher or lower than LB

1−g(x)
. Both deviations are less profitable than in the

case in which g(x1) = 1, albeit for slightly different reasons. In one of the regions, by

choosing a low r̂1, innovator 1 eludes litigation but at the cost of a significant reduction in

licensing revenues. In the second region, when r̂1 is higher, the lower profitability of the

deviation arises from the probability that the innovator might not receive any licensing

revenues from its patent if it is declared invalid, together with the corresponding litigation

costs. In particular, in this last region, the profits from a deviation are

Π̂1 = g(x)αr̂1 + (1− g(x)) [g(x)r̂1 − LU ] .

That is, when the patent of the other innovator is upheld in court the expected quantity

is α. If, instead, the portfolio of innovator 2 is invalidated and the downstream producer

also decides to sue innovator 1, the quantity sold is 1 but the royalty r̂1 is only paid if

the corresponding patent is upheld in the second trial.

We now illustrate how the risk of a litigation cascade might foster the existence of an

equilibrium with royalty stacking and no litigation. Take the case in which LU is very large
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so that the threat of litigation is particularly relevant for the upstream patent holders,

and consider the situation in which v ≤ 1
2
. Given r∗1 = r∗2 = 1/2, two conditions must

be satisfied for such an equilibrium to exist. First, using equation (4), the downstream

producer should not be interested in going to court, which in this case it implies

LB
1− g(x2)

≥ 1

2− g(x)

[
g(x)

α

2
+ (1− g(x)(α + (1− α)v)

]
. (6)

Second, the cost of a litigation cascade implies that the optimal deviation of innovator i,

for i = 1, 2, involves r̂i = min
{
v, LB

1−g(x)

}
and such a deviation is unprofitable if and only

if Π̂1 ≤ Π∗ or

[α + (1− α)(1− g(x))] r̂i ≤
α

2
. (7)

Notice that because, as in the case of one constrained patent holder, r̂i ≤ v the expected

demand expands if the patent of the other innovator is invalidated.

These two conditions provide a lower and upper bound, respectively, on LB

1−g(x)
for

an equilibrium with royalty stacking and no litigation to exist. That is, the litigation

costs of the downstream producer must be sufficiently large to discourage this firm from

litigating but they must also be sufficiently small so that the decrease in the royalty rate

necessary for a deviating firm to fend off litigation is large.

Although the previous conditions are highly non-linear in the main parameters of the

model it is easy to find combinations that satisfy them. More interestingly, we can also

find situations in which this equilibrium with a total royalty equal R∗ = 1 is sustainable

when both innovators have a very strong or a very weak patent but not in the case in

which the patents have an asymmetric strength.

Example 1. Consider the parameter values α = 0.1, v = 0.3, g(x2) = 0.68, LB = 0.035,

and LU sufficiently large. If litigation were not possible, the parameter values would satisfy

the conditions of Proposition 1 and an equilibrium with royalty stacking, Ru = 1, would

exist.
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Next, consider the case in which g(x1) = 1 so that only the second patent holder

is potentially constrained. By construction, LB

1−g(x2)
< v−α

1−α , and it can be verified that

innovator 1 has incentives to deviate from any candidate equilibrium (r∗1, r
∗
2) and choose

r̄1(r∗2), so that the royalty-stacking will not emerge in this case.

Finally, consider the case in which g(x1) = g(x2) = 0.68. Equations (6) and (7)

are satisfied and, thus, the royalty-stacking equilibrium exists when both innovators are

similarly constrained.

The previous example illustrates that, as in the main sections of the paper, once

we introduce litigation in the model the royalty rate is not necessarily monotonic in

the strength of the patents. When patents are weaker but more evenly distributed the

royalty-stacking problem might actually become more relevant.

B.3 Ad-Valorem Royalties

In this section we show that, under ad-valorem royalties, royalty stacking can also be

eliminated. We do so in the context of the parametric example of this section where we

assume that the downstream producer faces a marginal cost c ∈ (0, v). Under ad-valorem

royalties downstream profits can be written as

ΠB(S) =


(1− S)(α + (1− α)v)− c if S ≤ 1− c

v
,

α(1− S − c) if S ∈
(
1− c

v
, 1− c

]
,

0 otherwise,
(8)

We can now write a counterpart of Proposition 1.

Proposition 5. Under the two-point demand function, there exists a threshold ṽ such that

joint profit maximization implies a royalty SM = 1−c if v > ṽ and SM = 1− c
v

otherwise.

Under competition there is a continuum of undominated pure-strategy equilibria. There

exist values v and v, such that ṽ ≤ v < v so that the equilibrium ad-valorem royalty rates

(su1 , s
u
2) can be characterized as follows:

1. If v ≥ v, Su = su1 + su2 = 1− c
v

with sui ≤ 1− (1−2α)cv+αc
(1−α) v2

for i = 1, 2.
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2. If v ≤ v , Su = su1 + su2 = 1− c with sui ≥ 1− (1−2α)cv+αc
(1−α)v2

for i = 1, 2.

As a result, royalty stacking emerges in equilibrium when ṽ < v < v.

Proof. As in the case of per-unit royalties only two ad-valorem rates can maximize joint

profits, 1− c
v

and 1− c. The low rate dominates if

(
1− c

v

)
(α + (1− α)v) ≥ (1− c)α

or

v ≤ ṽ ≡
(1− 2α) c+

√
(4α2 − 4α + 1) c2 + (4α− 4α2) c

2(1− α)
.

Regarding the Nash equilibria, suppose that patent holder j = 1, 2 chooses sj. Patent

holder i will prefer si = 1− c
v
− sj to si = 1− c− sj if

(
1− c

v
− sj

)
(α + (1− α)v) ≥ (1− c− sj)α

or sj ≤ s̄ ≡ (1−α) v2−(1−2α) c v−α c
(1−α) v2

. Hence, for this equilibrium to exist we require that

2s̄ ≥ 1− c
v

or

v ≥ v ≡
(1− 3α) c+

√
(9α2 − 6α + 1) c2 + (8α− 8α2) c

2(1− α)
.

Similarly, an equilibrium with Su = 1− c would exist if sj ≥ s and 2s ≤ 1− c which can

occur if

v ≤ v ≡
(1− 2α) c+

√
(2α2 − 2α + 1) c2 + (2α− 2α2) c

(1− α) (1 + c)
.

Comparison of the threshold expressions lead to ṽ ≤ v < v if α < 0 and c ∈ (0, v).

As in the previous case, royalty stacking arises when v takes an intermediate value.

Innovators individually charge a total royalty rate higher than what joint maximization

would find optimal. The proof provides the specific expressions for the different thresh-

olds.

We turn now to the case where innovator 1 has a portfolio of strength x1 such that

g(x1) = 1 whereas x2 is such that g(x2) < 1. First notice that a necessary condition for
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an equilibrium with royalty stacking to exist, s∗1 + s∗2 = 1 − c, is that the downstream

producer does not have incentives to sue innovator 2. In particular, this implies that

(1− g(x2)) [ΠB(1− c− s∗2)− ΠB(1− c)] ≤ LB.

Two cases arise depending on whether the royalty of innovator 1, s∗1 = 1 − c − s∗2, is

greater than 1− c
v

or not. As a result, litigation by the downstream producer will not be

profitable if

s∗2 ≤ s̄2 =

{
LB

α(1−g(x2))
if LB

1−g(x2)
< α

(
c
v
− c
)
,

c (1−α)(1−v)
α+(1−α)v

+ LB

(α+(1−α)v)(1−g(x2))
otherwise.

(9)

For a given royalty rate s2 set by innovator 2 we can define, using equation (7), the

threshold royalty rate s̄1 as

s̄1(s2) = 1− c

v
− LB

(1− g(x2))(1− α)v
+

α

(1− α)v
s2 if s2 ≤ s2 ≤ s̄2.

where for any s2 < s̄2 we have s̄1 ≤ 1 − c
v
. As in the previous case, if s1 < s̄1(s2) the

patent of innovator 2 will be litigated by the downstream producer. The lower threshold

is defined as the highest value of s2 for which it is not worthwhile to sue innovator 2 even

when innovator 1 chooses s1 = 0 and it can be written as

s2 < s2 =

{
LB

(1−g(x2))(α+(1−α)v)
if LB

1−g(x2)
≤ (α + (1− α)v)

(
1− c

v

)
,

LB

α(1−g(x2))
− 1−α

α
(v − c) otherwise.

(10)

Given s2, innovator 1 will have incentives to deviate if, by choosing s1 ≤ s̄1(s2), profits

increase due to the increase in quantity when the patent of innovator 2 is invalidated.

The next proposition shows that, as in the case in which royalties were paid per-unit, the

royalty stacking equilibrium fails to exist when the portfolio of innovator 2 is sufficiently

weak.

Proposition 6. Suppose that v > ṽ. If LB

(1−g(x2))(α+(1−α)v)
< 1− (1−2α) c v+α c

(1−α) v2
and g(x2) is

sufficiently small, there is no pure strategy equilibrium with royalty stacking.

Proof. From Proposition 5, a necessary condition for a royalty-stacking equilibrium to

exist is that s∗1 + s∗2 = 1− c and s∗2 ≥ 1− (1−2α)cv+αc
(1−α)v2

or, else, patent holder 1 would have

incentives to lower its royalty rate.
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Furthermore, a second deviation consisting in choosing a royalty slightly lower than

s̄1(s∗2) might be profitable for patent holder 1 if it leads to profits

Π̂1 = [α + (1− α)(1− g(x2))v] s̄1(s∗2) > αs∗1.

This condition holds if

s∗2 < σ(G) ≡
(1− α)v

[
α(1− c)−G

(
1− c

v

)]
+G LB

1−g(x2)

α(G+ (1− α)v)
,

where G ≡ α + (1 − α)(1 − g(x2))v ∈ [α, 1]. Thus, in instances in which σ(G) <

1 − (1−2α)cv+αc
(1−α)v2

an equilibrium with royalty stacking will fail to exist. This inequality

implies that

G < G∗
(

LB
1− g(x2)

)
≡ α(1− α)(1− v)cv(α + (1− α)v)

− LB

1−g(x2)
(1− α) v2 + (1− α) v2 ((1− α) (v − c) + α)− (1− 2α)αcv − α2c

.

This function is increasing in LB

1−g(x2)
andG∗

(
LB

1−g(x2)

)
< G∗

(
(α + (1− α)v) ∗

(
1− (1−2α)cv+αc

(1−α)v2

))
=

α+ (1−α)v. Hence, there is always g(x2) sufficiently small so that the deviation will be

optimal.

C Equilibrium Litigation

A sustained assumption throughout the paper has been that it was always optimal for

the innovators to avoid litigation. This assumption is consistent with high litigation costs

of these upstream firms, LU . In this section we analyze the implications of relaxing this

assumption.

C.1 The Litigation Decision of Patent Holder 2

We concentrate in the situation where innovator 1 has a strong patent, g(x1) = 1, whereas

innovator 2’s patent is weak, g(x2) < 1. Figure 2 illustrates the structure of the game

and defines the relevant payoffs. Whereas in the benchmark model we assumed that the

downstream firm always accepted in equilibrium the royalty rate offered, here we need to
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(r1, r2)

Accept (Π1(r1, r2),Π2(r1, r2),ΠB(r1 + r2))

D

Litigate (Π̃1(r1, r2), Π̃2(r1, r2), Π̃B(r1, r2))

Figure 2: Timing of the game when litigation may occur in equilibrium.

define the payoffs when it prefers to go to court. These profits are defined as

Π̃1(r1, r2) = g(x2)Π1(r1, r2) + (1− g(x2))Π1(r1, 0),

Π̃2(r1, r2) = g(x2)Π2(r1, r2)− LU ,

Π̃B(r1, r2) = g(x2)ΠB(r1 + r2) + (1− g(x2))ΠB(r1)− LB,

where Πi(r1, r2) are the profits of innovator i when the downstream producer licenses both

patents. The expression Π̃B(r1, r2) has been implicitly used before, since its difference

with respect to ΠB(r1 + r2) determines the results in Lemma 3.

From the previous expressions it is clear that, contingent on litigation, the optimal

response of innovator 2 to a royalty r1 coincides with the one that arises when litigation

is not a threat. Denote this choice as rc2(r1) which, due to Assumption 1, is decreasing in

r1.

For a given r1 we obtain the royalty rate that guarantees that it is not worthwhile for

the downstream producer to litigate, r̄2(r1), as the inverse of r̄1(r2) in (1). Using Lemma

3, when LB is sufficiently low, this function is increasing in r1, LB, and g(x2). Since

rc2(r1) converges to 0 as r1 grows, it is immediate that there is a threshold value ρ̂1 so

that for r1 ≥ ρ̂1, rc2(r1) ≤ r̄2(r1). In that case, litigation would not be a relevant threat.

When r1 < ρ̂1, innovator 2 trades off the increase in revenues originated by rc2(r1) with

the probability that the patent is invalidated, yielding a revenue of 0. The former will

dominate if r1 is sufficiently small, as the large decrease in the royalty rate necessary to

fend off litigation is unlikely to be profitable.

In the rest of this section we rely on a specific demand structure to characterize the
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equilibrium. We consider the linear demand case, D(p) = 1 − p, where the downstream

firm chooses a unique (monopoly) price. In that case D̃(R) = 1−R
2

and, using the previous

expressions, we can show that

rc2(r1) =
1− r1

2
, (11)

r̄2(r1) = 1− r1 −

√
(1− r1)2 − 4LB

1− g(x2)
. (12)

The next result characterizes the optimal royalty rate for innovator 2 in this case.

Proposition 7. Suppose that demand is D̃(R) = 1−R
2

. When LU is sufficiently low, there

exists a unique threshold value ρ̃1(x2, LB, LU) ∈ [0, ρ̂1) decreasing in LB and LU so that

the optimal decision of innovator 2 becomes,

r∗2(r1) =

{
rc2(r1) if r1 < ρ̃1,
r̄2(r1) if r1 ≥ ρ̃1.

Proof. First notice that if LB

1−g(x2)
> 3

16
then rc2(r1) < r̄2(r1) for all r1. Otherwise, rc2(r1) <

r̄2(r1) if and only if r1 < ρ̂1 ≡ 1−
√

16LB

3(1−g(x2))
.

Define ρ̃1 as the value for which patent holder 2 will be indifferent between going to

court or offering a royalty rate that the downstream producer will accept. That is,

Π̃2 (ρ̃1, r
c
2(ρ̃1)) = g(x2)Π2 (ρ̃1, r

c
2(ρ̃1))− LU = Π2 (ρ̃1, r̄2(ρ̃1)) ,

where

Π̃2(r1, r
c
2) = g(x2)

(1− r1)2

8
− LU ,

Π2(r1, r̄2) =
4LB

1− g(x2)
− (1− r1)r̄2(r1).

We now show that this threshold is unique and litigation is preferred by patent holder

2 when r1 < ρ̃1. We can compute the effect of r1 on both choices as

dΠ̃2

dr1

(r1, r
c
2(r1)) = −g(x2)

1− r1

4
< 0,

dΠ2

dr1

(r1, r̄2(r1)) = − r̄2(r1)2

2
√

(1− r1)2 − 4LB

1−g(x2)

< 0.
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Figure 5: Royalties and profits under litigation and accommodation with parameter
values: LB = 0.015, g(x2) = 0.4, LU = 0.01.

Both derivatives are negative. However, notice that dΠ̃2

dr1
(r1, r

c
2) is increasing in r1 whereas

dΠ2

dr1
(r1, r̄2(r1)) is increasing in r1. That is, Π̃2(r1, r

c
2) is convex in r1 and Π2(r1, r̄2) is

concave in r1. This implies that there might be 0, 1 or 2 points in which these functions

cross. We can rule out the case in which the functions cross twice, because Π̃2(ρ̂1, r
c
2(ρ̂1)) <

Π2(ρ̂1, r
c
2(ρ̂1)) since in this case litigation does not imply a higher royalty rate. Hence,

two possibilities remain: (i) the functions do not cross, which occurs if Π̃2(r1, r
c
2(r1)) <

Π2(r1, r
c
2(r1)) for all values of r1 or (ii) there is a single crossing point ρ̂1 ∈ (0, ρ̃1), which

occurs if Π̃2(0, rc2(0)) > Π2(0, rc2(0)). The second case arises when LU is sufficiently low

as stated in the lemma.

The effect of LU and LB can be characterized directly from the derivatives

dΠ̃2

dLU
(r1, r

c
2(r1)) = −1,

dΠ2

dLB
(r1, r̄2(r1)) =

1

2
− 1− r1

4
√

(1− r1)2 − 4LB

1−g(x2)

.

Obviously, the first expression is always negative. The second is positive if and only if r1

is in the relevant range, r1 ≤ ρ̂1.

This proposition shows that the optimal royalty rate of innovator 2 can be charac-

terized by two regions. As explained before, when r1 is low, it does not pay off for

innovator 2 to decrease the royalty rate to avoid litigation. At the other extreme, when

r1 is sufficiently high, a small decrease in r2 is required and avoiding litigation increases
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profits. Under the linear demand function, there is a unique threshold, identified as ρ̃1,

that determines the two regions. The discontinuity in profits of moving, for the same

level of r2, from a situation where litigation is averted to one in which it occurs explains

why ρ̃1 < ρ̂1.

Figure 5 illustrates this result. The left panel characterizes the threshold ρ̂1 which

determines when the royalty choice of innovator 2 is restricted by litigation. The right

panel show that the profits of innovator 2 are decreasing in r1 with and without litigation

but for different reasons. When there is no litigation in equilibrium Π2(r1, r̄2(r1)) is

decreasing in r1 due to the standard Cournot arguments. When litigation occurs in

equilibrium, however, this effect is moderated by the fact that the decrease in the royalty

rate required to avoid litigation is now smaller. This counteracting effect also explains

why the threshold for which litigation is preferred is unique.

This figure also allows us to illustrate how the threshold ρ̃1 changes with the litigation

costs.4 Increases in LU lead to a downward shift in Π̃2(r1, r̄
c
2(r1)) as litigation becomes

less profitable for innovator 2. Similarly, in the case in which litigation does not occur, an

increase in LB allows innovator 2 to raise the royalty rate r̄2(r1), increasing Π2(r1, r̄2(r1)).

In both cases, ρ̂1 moves to the left and litigation is less likely to arise in equilibrium for

a given value of r1. The effect of an increase in x2 is ambiguous since it raises profits in

both cases.

C.2 The Optimal Choice of r1

We now discuss how the optimal royalty rate of innovator 1 is affected by the possibility

of litigation in equilibrium. To answer this question, we need to make an additional as-

sumption. We depart from the structure of the baseline model and assume that innovator

1 moves first. As explained in section 5, this assumption has little impact in the case

where one patent holder is strong and legal costs are high but it guarantees the existence

4It is immediate that ρ̂1 is decreasing in LB and g(x2).
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of an equilibrium in pure strategies. We continue to focus on the linear demand case

discussed in the last proposition, which guarantees that litigation only emerges for low

values of r1.

From the previous analysis, we need to distinguish two cases. If r1 < ρ̃1 innovator 2

will choose rc2(r1) and litigation will arise in equilibrium. If r1 ≥ ρ̃1, innovator 2 prefers

to offer a lower royalty rate, r̄2(r1), and avoid being brought to court.

In the first case, innovator 1 maximizes

max
r1<ρ̃1

r1

[
g(x2)D̃(r1 + rc2(r1)) + (1− g(x2))D̃(r1)

]
,

which implies an equilibrium royalty rate r̃∗1 = min
{
ρ̃1,

1
2

}
. Notice that when ρ̃1 is

sufficiently high, the royalty rate is a convex combination of the one that a monopolist

and a Stackelberg leader would choose which, under a linear demand, coincide.

In the second case, a high r1 is chosen and innovator 2 prefers to avoid litigation by

setting a royalty rate r̄2(r1). Innovator 1 maximizes the profit function

max
r1≥ρ̃1

r1
1− r1 − r̄2(r1)

2
,

resulting in a candidate royalty rate r̄∗1 = max {ρ̃1, r
ic
1 }, where ric1 ≡ 3

4
− 1

4

√
32LB

1−g(x2)
+ 1.

Notice that ric1 ≤ 1
2

meaning that this royalty rate is lower than the unconstrained choice

when litigation arises in equilibrium. That is, the unconstrained royalty rate of innovator

1 is lower in the case in which innovator 2 accommodates. This result is a version of

the Inverse-Cournot effect : by reducing r1 innovator 1 also fosters a reduction in r2,

mitigating the royalty-stacking distortion and increasing downstream sales and overall

profits.

It can also be shown that if we, again, abstract from the constraints imposed by ρ̃1,

innovator 1’s profits are always higher when r1 = ric1 and litigation does not occur in

equilibrium compared to when r1 = 1
2

and innovator 2 is brought to court. The linear

structure of the demand function implies that, for a given r1, the option that maximizes

profits is the one that leads to the lowest expected total royalty rate. This means that
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in some situations r1 = ρ̃1 will be optimal as a way to avoid litigation. The next result

uses the previous insights to characterize the optimal royalty rate for innovator 1 as a

function of the threshold ρ̃1.

Proposition 8. The optimal royalty rate of innovator 1 can be characterized as

r∗1 =


ric1 if ρ̃1 ≤ ric1 ,
ρ̃1 if ρ̃1 ∈ (ric1 , ρ

∗],
1
2

otherwise,

where ρ∗ > 1
2
.

Proof. To prove the result we only need to show that there are instances in which ρ̃1 >
1
2

so that r1 = 1/2 would be feasible and it would induce litigation, but raising the royalty

so that patent holder 2 would instead accommodate increases profits for patent holder 1.

First, notice that since ρ̃1 >
1
2

it has to be that Π̃2 (1/2, rc2(1/2)) > Π2 (1/2, r̄2(1/2)). This

condition implies that

g(x2)
1

32
− LU > r̄2(1/2)

1/2− r̄2(1/2)

2

or

r̄2(1/2) <
1−

√
1− g(x2) + 32LU

4
, (13)

given that r̄2(1/2) < rc2(1/2) = 1
4
.

We now show that when ρ̃1 >
1
2
, Π1 (1/2, r̄2(1/2)) > Π̃1 (1/2, rc2(1/2)). This condition

holds if the expected royalty rate is lower without litigation. That is, if

1

2
+ r̄2(1/2) <

1

2
+ g(x2)

1

4
.

This condition is satisfied given (13), since
√

1− g(x2) + 32LU > 1− g(x2).

By continuity, the previous conditions imply that if ρ̃1 is sufficiently close to 1
2

then

Π1 (ρ̃1, r̄2(ρ̃1)) > Π̃1 (1/2, rc2(1/2)).

Figure 6 illustrates the optimal royalty rate for different values of ρ̃1. This figure

identifies two regions. For values of ρ̃1 below a threshold ρ∗ it is optimal for innovator 1

to induce a low royalty rate r2 that will be accepted by the downstream producer. When
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Figure 6: Optimal royalty rate of patent holder 1 as a function of ρ̃1.

ρ̃1 is higher than ρ∗ inducing the litigation of patent 2 is optimal for innovator 1. The

royalty rate that maximizes profits in that region is the unconstrained one.

In order to unpack the implications of the previous result, it is useful to illustrate

the discussion by analyzing the effect of different values of LU . The comparative statics

exercise in this case is simple since the litigation cost of innovator 2 has no direct impact

on the profits of innovator 1 except through the changes in ρ̃1. From Proposition 7 we

know that increases in LU are associated with a decrease in ρ̃1, as the higher the cost of

innovator 2 to defend its patent in court the higher the royalty rate that innovator 1 can

charge without triggering litigation. As it can be seen from the figure, when LU is low,

and therefore ρ̃1 is high, innovator 1 is likely to find optimal to choose r1 = 1
2
. The reason

is that discouraging litigation (i.e. innovator 2 chooses a low r2) would require a very

high royalty rate. As a result the total burden r1 + r̄2(r1) would become very high and the

quantity sold low. As LU increases, however, discouraging innovator 2 from litigating is

easier and, eventually, when litigation costs are sufficiently high so that going to court is

not a reasonable option, the Inverse-Cournot effect is the only relevant force. This effect

pushes innovator 1 to choose a royalty rate lower than the one that would emerge when

litigation was optimal. This case has been the focus of the main sections of the paper.

For intermediate values of LU we observe a region in which litigation does not take
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place (to the left of ρ∗) but the royalty rate of innovator 1 is higher not only than ric1 but

also than the one that would emerge under litigation. When r∗1 = ρ̃1 the Inverse Cournot

effect is relaxed, allowing innovator 2 to increase the royalty rate and making the option

of avoiding litigation more profitable. Hence, for innovator 1, this higher royalty rate

generates a trade-off. Choosing ρ̃1, compared to r1 = 1
2
, implies a higher individual

royalty rate but a lower quantity due to the higher “expected” total royalty rate that

emerges due to the lower probability that the patent of innovator 2 is invalidated.5 For

values of ρ̃1 below ρ∗, this trade-off is resolved in favor of the high royalty rate even if

that implies an increase in r2.

The effect of LB is similar in the sense that increases in this cost also shift the threshold

value ρ̃1 downwards. However, an increase in LB also raises r̄2(r1), reducing the profits

from discouraging innovator 2 to defend its patent in court. Both effects go in the same

direction, suggesting that as LB increases the region under which promoting litigation is

optimal for patent holder 1 expands.

The effect of x2 is in general difficult to ascertain, as it affects the figure in several

dimensions. First, we can observe that, both under litigation and under accommodation,

the profits of innovator 1 decrease as x2 increase, since the problem of royalty stacking

becomes more relevant. However, an analytical comparison of the magnitude of the effect

in both cases as well as the effect of x2 on ρ̃1 is difficult to establish.

Finally, this example allows us to draw some implications for equilibrium royalty

stacking. Trivially, when litigation emerges in equilibrium the expected royalty rate is

lower than the one that arises when both patents are strong. The reason is that both

innovators would choose the same royalty rate but the expected royalty rate decreases

as the probability that the patent of innovator 2 is invalidated increases. At the other

extreme, when r∗1 = ric1 the Inverse Cournot effect implies that the resulting royalty rate

5For a given value of r1 we can write the profits of patent holder 1 as Π1(r1) = r1
1−R
2 , where

R = r1 + g(x2)rc2(r1) and R = r1 + r̄2(r1) when litigation occurs in equilibrium and when patent holder
2 avoids it, respectively.
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is lower than the one that would emerge under ironclad patents.

Interestingly, in the intermediate region, when r∗1 = ρ̃1 and litigation is credible, the

implications for royalty stacking are ambiguous. Innovator 1 can increase revenues by

raising the royalty rate above 1
2

even as this fosters a limited increase in r2. Under some

parameter configurations this may lead to a higher total royalty rate.
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